enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    Evolutionary optimization has been used in hyperparameter optimization for statistical machine learning algorithms, [10] automated machine learning, typical neural network [26] and deep neural network architecture search, [27] [28] as well as training of the weights in deep neural networks. [29]

  3. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6] This is known as the Universal Approximation Theorem . The identity activation function does not satisfy this property.

  4. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    In 1989, Dean A. Pomerleau published ALVINN, a neural network trained to drive autonomously using backpropagation. [47] The LeNet was published in 1989 to recognize handwritten zip codes. In 1992, TD-Gammon achieved top human level play in backgammon. It was a reinforcement learning agent with a neural network with two layers, trained by ...

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    A network is typically called a deep neural network if it has at least two hidden layers. [3] Artificial neural networks are used for various tasks, including predictive modeling, adaptive control, and solving problems in artificial intelligence. They can learn from experience, and can derive conclusions from a complex and seemingly unrelated ...

  6. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Later in the 1950s, Frank Rosenblatt used SGD to optimize his perceptron model, demonstrating the first applicability of stochastic gradient descent to neural networks. [12] Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden ...

  8. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    Model-free RL algorithms can start from a blank policy candidate and achieve superhuman performance in many complex tasks, including Atari games, StarCraft and Go.Deep neural networks are responsible for recent artificial intelligence breakthroughs, and they can be combined with RL to create superhuman agents such as Google DeepMind's AlphaGo.

  9. Neural scaling law - Wikipedia

    en.wikipedia.org/wiki/Neural_scaling_law

    In machine learning, a neural scaling law is an empirical scaling law that describes how neural network performance changes as key factors are scaled up or down. These factors typically include the number of parameters, training dataset size, [ 1 ] [ 2 ] and training cost.