enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data compression - Wikipedia

    en.wikipedia.org/wiki/Data_compression

    Genetics compression algorithms are the latest generation of lossless algorithms that compress data (typically sequences of nucleotides) using both conventional compression algorithms and genetic algorithms adapted to the specific datatype. In 2012, a team of scientists from Johns Hopkins University published a genetic compression algorithm ...

  3. Lossless compression - Wikipedia

    en.wikipedia.org/wiki/Lossless_compression

    By operation of the pigeonhole principle, no lossless compression algorithm can shrink the size of all possible data: Some data will get longer by at least one symbol or bit. Compression algorithms are usually effective for human- and machine-readable documents and cannot shrink the size of random data that contain no redundancy. Different ...

  4. Model compression - Wikipedia

    en.wikipedia.org/wiki/Model_compression

    Model compression is a machine learning technique for reducing the size of trained models. Large models can achieve high accuracy, but often at the cost of significant resource requirements. Large models can achieve high accuracy, but often at the cost of significant resource requirements.

  5. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".

  6. Run-length encoding - Wikipedia

    en.wikipedia.org/wiki/Run-length_encoding

    Run-length encoding can be expressed in multiple ways to accommodate data properties as well as additional compression algorithms. For instance, one popular method encodes run lengths for runs of two or more characters only, using an "escape" symbol to identify runs, or using the character itself as the escape, so that any time a character ...

  7. Information bottleneck method - Wikipedia

    en.wikipedia.org/wiki/Information_bottleneck_method

    The information bottleneck method is a technique in information theory introduced by Naftali Tishby, Fernando C. Pereira, and William Bialek. [1] It is designed for finding the best tradeoff between accuracy and complexity (compression) when summarizing (e.g. clustering) a random variable X, given a joint probability distribution p(X,Y) between X and an observed relevant variable Y - and self ...

  8. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce an entire set, but rather trees remain small from the start.

  9. Weissman score - Wikipedia

    en.wikipedia.org/wiki/Weissman_score

    The Weissman score is a performance metric for lossless compression applications. It was developed by Tsachy Weissman, a professor at Stanford University, and Vinith Misra, a graduate student, at the request of producers for HBO's television series Silicon Valley, a television show about a fictional tech start-up working on a data compression algorithm.