Search results
Results from the WOW.Com Content Network
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1]
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010). The n th coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the n th region is n times n × n.
Some web browsers allow you to simply Save As... or Print to PDF. Wikipedia's inbuilt Download as PDF option. Other PDF software can be used to create a PDF from the web page, which may give more control over the output. This page offers help with Wikipedia's download tool.
The left side of this identity describes a square number, while the right side describes a triangular number, so the result is a square triangular number. Falcón and Díaz-Barrero (2006) proved another identity relating Pell numbers to squares and showing that the sum of the Pell numbers up to P 4n +1 is always a square:
Having only 2 and 3 as its prime divisors, 162 is a 3-smooth number. [1] 162 is also an abundant number, since its sum of divisors + + + + + + + + = is greater than it. [2]As the product = of numbers three units apart from each other, it is a triple factorial number.
Figure 3 shows the first fold, and figure 4 the result of the first nine folds, which form a spiral. Figures 5-6 show the final folding of the spiral to make a hexagon; in 5, two red faces have been hidden by a valley fold, and in 6, two red faces on the bottom side have been hidden by a mountain fold.
In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.