Search results
Results from the WOW.Com Content Network
The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
The symbols used in crystallography mean the following: C n (for cyclic) indicates that the group has an n-fold rotation axis. C nh is C n with the addition of a mirror (reflection) plane perpendicular to the axis of rotation. C nv is C n with the addition of n mirror planes parallel to the axis of rotation.
The fourteen three-dimensional lattices, classified by lattice system, are shown above. The crystal structure consists of the same group of atoms, the basis, positioned around each and every lattice point. This group of atoms therefore repeats indefinitely in three dimensions according to the arrangement of one of the Bravais lattices.
These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only. They [ clarification needed ] represent the maximum symmetry a structure with the given translational symmetry can have.
Bravais published a memoir about crystallography in 1847. A co-founder of the Société météorologique de France, he joined the French Academy of Sciences in 1854. Bravais also worked on the theory of observational errors, a field in which he is especially known for his 1846 paper "Mathematical analysis on the probability of errors of a point".
The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).
In either case, there are 3 lattice points per unit cell in total and the lattice is non-primitive. The Bravais lattices in the hexagonal crystal family can also be described by rhombohedral axes. [4] The unit cell is a rhombohedron (which gives the name for the rhombohedral lattice). This is a unit cell with parameters a = b = c; α = β = γ ...
Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square base (a by a) and height (c, which is different from a).