enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows:

  3. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...

  4. Diesel fuel tanks in trucks - Wikipedia

    en.wikipedia.org/wiki/Diesel_fuel_tanks_in_trucks

    The most common diesel tank designs are cylindrical, rectangular and D-Style tanks. Cylindrical designs are often selected for their visual appeal while the rectangular tank is most often employed to maximize fuel volume for a given space. The D-Tank, as its name implies, is actually a hybrid of the cylindrical and rectangular designs.

  5. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  6. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    S foot of water per foot of pipe; P d = pressure drop over the length of pipe in psig (pounds per square inch gauge pressure) L = length of pipe in feet; Q = flow, gpm (gallons per minute) C = pipe roughness coefficient; d = inside pipe diameter, in (inches) Note: Caution with U S Customary Units is advised. The equation for head loss in pipes ...

  7. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    Note that for the case of a circular pipe, D H = 4 π R 2 2 π R = 2 R {\displaystyle D_{\text{H}}={\frac {4\pi R^{2}}{2\pi R}}=2R} The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number , which prefers a single variable for flow analysis rather than ...

  8. Fuel bladder - Wikipedia

    en.wikipedia.org/wiki/Fuel_bladder

    Standard fuel bladder tanks sizes range from 100-US-gallon (380 L) to 200,000-US-gallon (760,000 L) capacities and larger. Custom fuel storage bladders and cells are available, although at sizes exceeding 50,000 US gallons (190,000 L) there is an increased spill risk.

  9. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    In wide rectangular channels, the hydraulic radius is approximated by the flow depth. The hydraulic radius is not half the hydraulic diameter as the name may suggest, but one quarter in the case of a full pipe. It is a function of the shape of the pipe, channel, or river in which the water is flowing.