Search results
Results from the WOW.Com Content Network
Bose first sent a paper to Einstein on the quantum statistics of light quanta (now called photons), in which he derived Planck's quantum radiation law without any reference to classical physics. Einstein was impressed, translated the paper himself from English to German and submitted it for Bose to the Zeitschrift für Physik , which published ...
Bose and Einstein extended the idea to atoms and this led to the prediction of the existence of phenomena which became known as Bose–Einstein condensate, a dense collection of bosons (which are particles with integer spin, named after Bose), which was demonstrated to exist by experiment in 1995.
There has been some argument that the term "atom laser" is misleading. Indeed, "laser" stands for light amplification by stimulated emission of radiation which is not particularly related to the physical object called an atom laser, and perhaps describes more accurately the Bose–Einstein condensate (BEC). The terminology most widely used in ...
The thermodynamics of an ideal Bose gas is best calculated using the grand canonical ensemble.The grand potential for a Bose gas is given by: = = (). where each term in the sum corresponds to a particular single-particle energy level ε i; g i is the number of states with energy ε i; z is the absolute activity (or "fugacity"), which may also be expressed in terms of the chemical ...
The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density. The blue and white areas represent higher density. Ultracold atom trapping in optical lattices is an experimental tool commonly used in condensed matter physics, and in atomic, molecular, and optical physics .
Today's fields of interest among quantum optics researchers include parametric down-conversion, parametric oscillation, even shorter (attosecond) light pulses, use of quantum optics for quantum information, manipulation of single atoms, Bose–Einstein condensates, their application, and how to manipulate them (a sub-field often called atom ...
Besides these practical applications of Bose–Einstein correlations in interferometry, the quantum statistical approach [10] has led to quite an unexpected heuristic application, related to the principle of identical particles, the fundamental starting point of Bose–Einstein correlations.
Within a Bose–Einstein condensate a light pulse is compressed by a factor of 50 million, without losing any of the information stored within it. In this Bose–Einstein condensate, information encoded in a light pulse can be transferred to the atom waves. Because all the atoms move coherently, the information does not dissolve into random noise.