enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bose–Einstein condensate - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_condensate

    Bose first sent a paper to Einstein on the quantum statistics of light quanta (now called photons), in which he derived Planck's quantum radiation law without any reference to classical physics. Einstein was impressed, translated the paper himself from English to German and submitted it for Bose to the Zeitschrift für Physik , which published ...

  3. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_statistics

    Both Fermi–Dirac and Bose–Einstein become Maxwell–Boltzmann statistics at high temperature or at low concentration. Bose–Einstein statistics was introduced for photons in 1924 by Bose and generalized to atoms by Einstein in 1924–25. The expected number of particles in an energy state i for Bose–Einstein statistics is:

  4. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    Today's fields of interest among quantum optics researchers include parametric down-conversion, parametric oscillation, even shorter (attosecond) light pulses, use of quantum optics for quantum information, manipulation of single atoms, Bose–Einstein condensates, their application, and how to manipulate them (a sub-field often called atom ...

  5. List of states of matter - Wikipedia

    en.wikipedia.org/wiki/List_of_states_of_matter

    Fermionic condensate: Similar to the Bose-Einstein condensate but composed of fermions, also known as Fermi-Dirac condensate. The Pauli exclusion principle prevents fermions from entering the same quantum state, but a pair of fermions can be bound to each other and behave like a boson, and two or more such pairs can occupy quantum states of a ...

  6. Condensed matter physics - Wikipedia

    en.wikipedia.org/wiki/Condensed_matter_physics

    The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density. The blue and white areas represent higher density. Ultracold atom trapping in optical lattices is an experimental tool commonly used in condensed matter physics, and in atomic, molecular, and optical physics .

  7. Atom laser - Wikipedia

    en.wikipedia.org/wiki/Atom_laser

    There has been some argument that the term "atom laser" is misleading. Indeed, "laser" stands for light amplification by stimulated emission of radiation which is not particularly related to the physical object called an atom laser, and perhaps describes more accurately the Bose–Einstein condensate (BEC). The terminology most widely used in ...

  8. Hanbury Brown and Twiss effect - Wikipedia

    en.wikipedia.org/wiki/Hanbury_Brown_and_Twiss_effect

    A difference in repulsion of Bose–Einstein condensate in the "trap-and-free fall" analogy of the HBT effect [6] affects comparison. Also, in the field of particle physics , Gerson Goldhaber et al. performed an experiment in 1959 in Berkeley and found an unexpected angular correlation among identical pions , discovering the ρ 0 resonance , by ...

  9. Bose–Einstein correlations - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_correlations

    Besides these practical applications of Bose–Einstein correlations in interferometry, the quantum statistical approach [10] has led to quite an unexpected heuristic application, related to the principle of identical particles, the fundamental starting point of Bose–Einstein correlations.