Search results
Results from the WOW.Com Content Network
On this assumption, a two-year return is not possible for some years, and for some years a delta-v kick of 0.6 to 2.7 km/s at Mars may be needed to get back to Earth. [ 10 ] NASA published the Design Reference Architecture 5.0 for Mars in 2009, advocating a 174-day transfer to Mars, which is close to Zubrin's proposed trajectory. [ 11 ]
[1] [2] The low eccentricity and comparatively small size of its orbit give Venus the least range in distance between perihelion and aphelion of the planets: 1.46 million km. The planet orbits the Sun once every 225 days [3] and travels 4.54 au (679,000,000 km; 422,000,000 mi) in doing so, [4] giving an average orbital speed of 35 km/s (78,000 ...
Venus's equator rotates at 6.52 km/h (4.05 mph), whereas Earth's rotates at 1,674.4 km/h (1,040.4 mph). [note 2] [149] Venus's rotation period measured with Magellan spacecraft data over a 500-day period is smaller than the rotation period measured during the 16-year period between the Magellan spacecraft and Venus Express visits, with a ...
In the special case of perfectly circular orbits, the semimajor axis a is equal to the radius of the orbit, and the orbital velocity is constant and equal to = where: r is the circular orbit's radius in meters, This corresponds to 1 ⁄ √2 times (≈ 0.707 times) the escape velocity.
According to the data of the altimeters of the Pioneer, nearly 51% of the surface is found located within 500 metres (1,640 ft) of the median radius of 6,052 km (3760 mi); only 2% of the surface is located at greater elevations than 2 kilometres (1 mi) from the median radius. Danilova crater in relief
The surface of Venus is comparatively flat. When 93% of the topography was mapped by Pioneer Venus Orbiter, scientists found that the total distance from the lowest point to the highest point on the entire surface was about 13 kilometres (8.1 mi), about the same as the vertical distance between the Earth's ocean floor and the higher summits of the Himalayas.
Note that the semi-major axis is proportional to the 2/3 power of the orbital period. For example, planets in a 2:3 orbital resonance (such as plutinos relative to Neptune) will vary in distance by (2/3) 2/3 = −23.69% and +31.04% relative to one another. 2 Ceres and Pluto are dwarf planets rather than major planets.
In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (from Ancient Greek ἐπίκυκλος (epíkuklos) 'upon the circle', meaning "circle moving on another circle") [1] was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets.