enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    Picture of a poster clarifying the difference between a sidereal day and the more conventional solar day Animation showing the difference between a sidereal day and a solar day. Sidereal time ("sidereal" pronounced / s aɪ ˈ d ɪər i əl, s ə-/ sy-DEER-ee-əl, sə-) is a system of timekeeping used especially by astronomers.

  3. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    27.321661 days [7] (equal to sidereal orbital period due to spin-orbit locking, a sidereal lunar month) 27 d 7 h 43 m 11.5 s: 29.530588 days [7] (equal to synodic orbital period, due to spin-orbit locking, a synodic lunar month) none (due to spin-orbit locking) Mars: 1.02595675 days [3] 1 d 0 h 37 m 22.663 s: 1.02749125 [8] days: Ceres: 0.37809 ...

  4. Lunar day - Wikipedia

    en.wikipedia.org/wiki/Lunar_day

    The formal lunar day is therefore the time of a full lunar day-night cycle. Due to tidal locking, this equals the time that the Moon takes to complete one synodic orbit around Earth, a synodic lunar month, returning to the same lunar phase. The synodic period is about 29 + 1 ⁄ 2 Earth days, which is about 2.2 days longer than its sidereal period.

  5. Synodic day - Wikipedia

    en.wikipedia.org/wiki/Synodic_day

    A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars [1] and is the basis of sidereal time.

  6. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    Given enough time, this would create a mutual tidal locking between Earth and the Moon. The length of Earth's day would increase and the length of a lunar month would also increase. Earth's sidereal day would eventually have the same length as the Moon's orbital period, about 47 times the length of

  7. Lunar month - Wikipedia

    en.wikipedia.org/wiki/Lunar_month

    W1 is the ecliptic longitude of the Moon w.r.t. the fixed ICRS equinox: its period is the sidereal month. If we add the rate of precession to the sidereal angular velocity, we get the angular velocity w.r.t. the Equinox of the Date: its period is the tropical month (which is rarely used). l is the mean anomaly: its period is the anomalistic month.

  8. Lunar precession - Wikipedia

    en.wikipedia.org/wiki/Lunar_precession

    After one nodal precession period, the number of draconic months exceeds the number of sidereal months by exactly one. This period is about 6,793 days (18.60 years). [3] As a result of this nodal precession, the time for the Sun to return to the same lunar node, the eclipse year, is about 18.6377 days shorter than a sidereal year.

  9. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Thus, the sidereal day is shorter than the stellar day by about 8.4 ms. [37] Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. This is a result of the Earth turning 1 additional rotation, relative to the celestial reference frame, as it orbits the Sun (so 366.24 rotations/y).