Search results
Results from the WOW.Com Content Network
The series = + = + + is known as the alternating harmonic series. It is conditionally convergent by the alternating series test , but not absolutely convergent . Its sum is the natural logarithm of 2 .
The alternating series test guarantees that an alternating series ... the partial sum of the harmonic series, which is divergent. Hence the original series is ...
Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.
Suppose that two positive integers a and b are given, and that a rearrangement of the alternating harmonic series is formed by taking, in order, a positive terms from the alternating harmonic series, followed by b negative terms, and repeating this pattern at infinity (the alternating series itself corresponds to a = b = 1, the example in the ...
The threefold Cauchy product of 1 − 1 + 1 − 1 + ... is 1 − 3 + 6 − 10 + ..., the alternating series of triangular numbers; its Abel and Euler sum is 1 ⁄ 8. [16] The fourfold Cauchy product of 1 − 1 + 1 − 1 + ... is 1 − 4 + 10 − 20 + ..., the alternating series of tetrahedral numbers , whose Abel sum is 1 ⁄ 16 .
If a series is convergent but not absolutely convergent, it is called conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series. Many standard tests for divergence and convergence, most notably including the ratio test and the root test, demonstrate absolute convergence.
The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
In the following, a sum or product taken over p always represents a sum or product taken over a specified set of primes. The proof rests upon the following four inequalities: Every positive integer i can be uniquely expressed as the product of a square-free integer and a square as a consequence of the fundamental theorem of arithmetic .