Search results
Results from the WOW.Com Content Network
Electromagnets often use a wire curled up into solenoid around an iron core which strengthens the magnetic field produced because the iron core becomes magnetised. [15] [16] Maxwell's extension to the law states that a time-varying electric field can also generate a magnetic field. [12]
The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...
Magnetic field generated by passing a current through a coil. An electric current flowing in a wire creates a magnetic field around the wire, due to Ampere's law (see drawing of wire with magnetic field). To concentrate the magnetic field in an electromagnet, the wire is wound into a coil with many turns of wire lying side-by-side. [2]
As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.
Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations. [9]
Schematic diagram of Gouy balance. The Gouy balance, invented by the French physicist Louis Georges Gouy, is a device for measuring the magnetic susceptibility of a sample. . The Gouy balance operates on magnetic torque, by placing the sample on a horizontal arm or beam suspended by a thin fiber, and placing either a permanent magnet or electromagnet on the other end of the arm, there is a ...
The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.
This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.. The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface).