Search results
Results from the WOW.Com Content Network
The idea of a tree of life arose from ancient notions of a ladder-like progression from lower into higher forms of life (such as in the Great Chain of Being).Early representations of "branching" phylogenetic trees include a "paleontological chart" showing the geological relationships among plants and animals in the book Elementary Geology, by Edward Hitchcock (first edition: 1840).
Lineages are typically visualized as subsets of a phylogenetic tree. A lineage is a single line of descent or linear chain within the tree, while a clade is a (usually branched) monophyletic group, containing a single ancestor and all its descendants. [3] Phylogenetic trees are typically created from DNA, RNA or protein sequence data. Apart ...
The results are a phylogenetic tree—a diagram setting the hypothetical relationships between organisms and their evolutionary history. [4] The tips of a phylogenetic tree can be living taxa or fossils, which represent the present time or "end" of an evolutionary lineage, respectively. A phylogenetic diagram can be rooted or unrooted.
The tree of life. Phylogenetic Trees are representations of genetic lineage. They are figures that show how related species are to one another. They formed by analyzing the physical traits as well as the similarities of the DNA between species. Then by using a molecular clock scientists can estimate when the species diverged. An example of a ...
The result of these analyses is a phylogeny (also known as a phylogenetic tree) – a diagrammatic hypothesis about the history of the evolutionary relationships of a group of organisms. [6] Phylogenetic analyses have become central to understanding biodiversity, evolution, ecological genetics and genomes .
The science that tries to reconstruct phylogenetic trees and thus discover clades is called phylogenetics or cladistics, the latter term coined by Ernst Mayr (1965), derived from "clade". The results of phylogenetic/cladistic analyses are tree-shaped diagrams called cladograms ; they, and all their branches, are phylogenetic hypotheses.
In phylogenetics, parsimony is mostly interpreted as favoring the trees that minimize the amount of evolutionary change required (see for example [2]).Alternatively, phylogenetic parsimony can be characterized as favoring the trees that maximize explanatory power by minimizing the number of observed similarities that cannot be explained by inheritance and common descent.
Molecular systematics is an essentially cladistic approach: it assumes that classification must correspond to phylogenetic descent, and that all valid taxa must be monophyletic. This is a limitation when attempting to determine the optimal tree(s), which often involves bisecting and reconnecting portions of the phylogenetic tree(s).