Search results
Results from the WOW.Com Content Network
Cytosine (/ ˈ s aɪ t ə ˌ s iː n,-ˌ z iː n,-ˌ s ɪ n / [2] [3]) (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amine group at position 4 and a keto group ...
Both RNA and DNA contain two major purine bases, adenine (A) and guanine (G), and two major pyrimidines. In both DNA and RNA, one of the pyrimidines is cytosine (C). However, DNA and RNA differ in the second major pyrimidine. DNA contains thymine (T) while RNA contains uracil (U). There are some rare cases where thymine does occur in RNA and ...
Since RNA is charged, metal ions such as Mg 2+ are needed to stabilise many secondary and tertiary structures. [17] The naturally occurring enantiomer of RNA is D-RNA composed of D-ribonucleotides. All chirality centers are located in the D-ribose. By the use of L-ribose or rather L-ribonucleotides, L-RNA can be synthesized.
The Sun is 1.4 million kilometers (4.643 light-seconds) wide, about 109 times wider than Earth, or four times the Lunar distance, and contains 99.86% of all Solar System mass. The Sun is a G-type main-sequence star that makes up about 99.86% of the mass of the Solar System. [26]
The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is deoxyribose, a variant of ribose, the polymer is DNA. Nucleic acids are chemical compounds that are found in nature. They carry information in cells and make up genetic material.
In the cores of lower-mass main-sequence stars such as the Sun, the dominant energy production process is the proton–proton chain reaction. This creates a helium-4 nucleus through a sequence of reactions that begin with the fusion of two protons to form a deuterium nucleus (one proton plus one neutron) along with an ejected positron and ...
Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.
The major difference between the two molecules is the base used, which in CTP is cytosine. CTP is a substrate in the synthesis of RNA . CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions.