Search results
Results from the WOW.Com Content Network
An RNA pseudoknot structure. For example, the RNA component of human telomerase. [7] A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem.
Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.
Structure of a hammerhead ribozyme, a ribozyme that cuts RNA. Messenger RNA (mRNA) is the type of RNA that carries information from DNA to the ribosome, the sites of protein synthesis (translation) in the cell cytoplasm. The coding sequence of the mRNA determines the amino acid sequence in the protein that is produced. [27]
5' cap structure. A 5' cap (also termed an RNA cap, an RNA 7-methylguanosine cap, or an RNA m 7 G cap) is a modified guanine nucleotide that has been added to the "front" or 5' end of a eukaryotic messenger RNA shortly after the start of transcription. The 5' cap consists of a terminal 7-methylguanosine residue that is linked through a 5'-5 ...
The ViennaRNA Package is software, a set of standalone programs and libraries used for predicting and analysing RNA nucleic acid secondary structures. [1] The source code for the package is released as free and open-source software and compiled binaries are available for the operating systems Linux, macOS, and Windows.
Two important functions are the binding potential with ligands or proteins, and its ability to stabilize the whole tertiary structure of DNA or RNA. The strong structure can inhibit or modulate transcription and replication, such as in the telomeres of chromosomes and the UTR of mRNA. [18] The base identity is important towards ligand binding.
An RNA sequence that folds into a ribozyme is capable of invading duplexed RNA, rearranging into an open holopolymerase complex, and then searching for a specific RNA promoter sequence, and upon recognition rearrange again into a processive form that polymerizes a complementary strand of the sequence.
The tertiary structure of the small subunit ribosomal RNA (SSU rRNA) has been resolved by X-ray crystallography. [33] The secondary structure of SSU rRNA contains 4 distinct domains—the 5', central, 3' major and 3' minor domains. A model of the secondary structure for the 5' domain (500-800 nucleotides) is shown.