enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    ((x),(y) = {239, 13 2} is a solution to the Pell equation x 22 y 2 = −1.) Formulae of this kind are known as Machin-like formulae . Machin's particular formula was used well into the computer era for calculating record numbers of digits of π , [ 39 ] but more recently other similar formulae have been used as well.

  3. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  4. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    William Rutherford [2] Calculated 208 decimal places, but not all were correct 152 1844: Zacharias Dase and Strassnitzky [2] Calculated 205 decimal places, but not all were correct 200: 1847: Thomas Clausen [2] Calculated 250 decimal places, but not all were correct 248: 1853: Lehmann [2] 261: 1853: Rutherford [2] 440: 1853: William Shanks [22]

  5. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...

  6. Six nines in pi - Wikipedia

    en.wikipedia.org/wiki/Six_nines_in_pi

    A sequence of six consecutive nines occurs in the decimal representation of the number pi (π), starting at the 762nd decimal place. [1] [2] It has become famous because of the mathematical coincidence, and because of the idea that one could memorize the digits of π up to that point, and then suggest that π is rational.

  7. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    0.00034 has 2 significant figures (3 and 4) if the resolution is 0.00001. Zeros to the right of the last non-zero digit (trailing zeros) in a number with the decimal point are significant if they are within the measurement or reporting resolution. 1.200 has four significant figures (1, 2, 0, and 0) if they are allowed by the measurement resolution.

  8. Mathematical coincidence - Wikipedia

    en.wikipedia.org/wiki/Mathematical_coincidence

    A mathematical coincidence often involves an integer, and the surprising feature is the fact that a real number arising in some context is considered by some standard as a "close" approximation to a small integer or to a multiple or power of ten, or more generally, to a rational number with a small denominator.

  9. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    In practical implementations such as y-cruncher, there is a relatively large constant overhead per term plus a time proportional to / ⁡, and a point of diminishing returns appears beyond three or four arctangent terms in the sum; this is why the supercomputer calculation above used only a four-term version.