enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Brownian_motion

    Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). [2] This motion pattern typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume.

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of photonics equations; List of relativistic equations; Table of thermodynamic equations

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material

  6. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).

  7. Langevin equation - Wikipedia

    en.wikipedia.org/wiki/Langevin_equation

    The original Langevin equation [1] [2] describes Brownian motion, the apparently random movement of a particle in a fluid due to collisions with the molecules of the fluid, = + (). Here, v {\displaystyle \mathbf {v} } is the velocity of the particle, λ {\displaystyle \lambda } is its damping coefficient, and m {\displaystyle m} is its mass.

  8. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ

  9. Stochastic calculus - Wikipedia

    en.wikipedia.org/wiki/Stochastic_calculus

    The main flavours of stochastic calculus are the Itô calculus and its variational relative the Malliavin calculus. For technical reasons the Itô integral is the most useful for general classes of processes, but the related Stratonovich integral is frequently useful in problem formulation (particularly in engineering disciplines). The ...