Search results
Results from the WOW.Com Content Network
As its alternate name (5-methyluracil) suggests, thymine may be derived by methylation of uracil at the 5th carbon. In RNA, thymine is replaced with uracil in most cases. In DNA, thymine (T) binds to adenine (A) via two hydrogen bonds, thereby stabilizing the nucleic acid structures. Thymine combined with deoxyribose creates the nucleoside ...
The first reaction is the simplest of the syntheses, by adding water to cytosine to produce uracil and ammonia: [2] C 4 H 5 N 3 O + H 2 O → C 4 H 4 N 2 O 2 + NH 3. The most common way to synthesize uracil is by the condensation of malic acid with urea in fuming sulfuric acid: [5] C 4 H 4 O 4 + NH 2 CONH 2 → C 4 H 4 N 2 O 2 + 2 H 2 O + CO
DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...
One common mutagenic base analog is 5-bromouracil, which resembles thymine but can base-pair to guanine in its enol form. [ 11 ] Other chemicals, known as DNA intercalators , fit into the gap between adjacent bases on a single strand and induce frameshift mutations by "masquerading" as a base, causing the DNA replication machinery to skip or ...
The chemical compound 5-methyluridine (symbol m 5 U or m5U), also called ribothymidine (rT) [footnote 1], is a pyrimidine nucleoside. It is the ribonucleoside counterpart to the deoxyribonucleoside thymidine, which lacks a hydroxyl group at the 2' position. 5-Methyluridine contains a thymine base joined to a ribose pentose sugar. [4] It is a ...
Spontaneous deamination of 5-methylcytosine results in thymine and ammonia. This is the most common single nucleotide mutation. In DNA, this reaction, if detected prior to passage of the replication fork, can be corrected by the enzyme thymine-DNA glycosylase, which removes the thymine base in a G/T mismatch. This leaves an abasic site that is ...
The 5'-hydroxyl group is protected by an acid-labile DMT (4,4'-dimethoxytrityl) group. Thymine and uracil, nucleic bases of thymidine and uridine, respectively, do not have exocyclic amino groups and hence do not require any protection.
In the A-U Hoogsteen base pair, the adenine is rotated 180° about the glycosidic bond, resulting in an alternative hydrogen bonding scheme which has one hydrogen bond in common with the Watson-Crick base pair (adenine N6 and thymine N4), while the other hydrogen bond, instead of occurring between adenine N1 and thymine N3 as in the Watson ...