Search results
Results from the WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
where is the actual value of the quantity being forecast, is the forecast, and is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a ...
where the partials are evaluated at the mean of the respective measurement variable. (For more than two input variables this equation is extended, including the various mixed partials.) Returning to the simple example case of z = x 2 the mean is estimated by
This statistics -related article is a stub. You can help Wikipedia by expanding it.
In contrast to the mean absolute percentage error, SMAPE has both a lower and an upper bound. Indeed, the formula above provides a result between 0% and 200%. Indeed, the formula above provides a result between 0% and 200%.
It is a goodness of fit measure of statistical models, and forms the mathematical basis for several correlation coefficients. [1] The summary statistics is particularly useful and popular when used to evaluate models where the dependent variable is binary, taking on values {0,1}.
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.