Search results
Results from the WOW.Com Content Network
They send an inhibitory axon to synapse with the cell body of the initial alpha neuron and/or an alpha motor neuron of the same motor pool. In this way, the Renshaw cell action represents a negative feedback mechanism. A Renshaw cell may be supplied by more than one alpha motor neuron collateral and it may synapse on multiple motor neurons.
Much of the synchronous bursting activity associated with interictal epileptiform activity appears to be generated in CA3. Its excitatory collateral connectivity seems to be mostly responsible for this. CA3 uniquely, has pyramidal cell axon collaterals that ramify extensively with local regions and make excitatory contacts with them.
An axon can divide into many branches called telodendria (Greek for 'end of tree'). At the end of each telodendron is an axon terminal (also called a terminal bouton or synaptic bouton, or end-foot). [20] Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections ...
Schaffer collaterals are axon collaterals given off by CA3 pyramidal cells in the hippocampus.These collaterals project to area CA1 of the hippocampus [1] and are an integral part of memory formation and the emotional network of the Papez circuit, and of the hippocampal trisynaptic loop.
Hippocampus anatomy describes the physical aspects and properties of the hippocampus, a neural structure in the medial temporal lobe of each cerebral hemisphere of the brain. It has a distinctive, curved shape that has been likened to the sea-horse creature of Greek mythology , and the ram's horns of Amun in Egyptian mythology .
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
The axon reflex was discovered by Kovalevskiy and Sokovnin, two Russian scientists in 1873. [5] They described the axon reflex as a new type of peripheral (or local) reflex where electrical signal starts in the middle of the axon and transmit immediately skipping both an integration center and a chemical synapse as typically observed in the spinal cord reflex.
In neuroscience, the axolemma (from Greek lemma 'membrane, envelope', and 'axo-' from axon [1]) is the cell membrane of an axon, [1] the branch of a neuron through which signals (action potentials) are transmitted. The axolemma is a three-layered, bilipid membrane. Under standard electron microscope preparations, the structure is approximately ...