enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    A year has about 365.24 solar days but 366.24 sidereal days. Therefore, there is one fewer solar day per year than there are sidereal days, similar to an observation of the coin rotation paradox. [5] This makes a sidereal day approximately ⁠ 365.24 / 366.24 ⁠ times the length of the 24-hour solar day.

  3. Lunar day - Wikipedia

    en.wikipedia.org/wiki/Lunar_day

    A lunar day is the time it takes for Earth's Moon to complete on its axis one synodic rotation, meaning with respect to the Sun. Informally, a lunar day and a lunar night is each approx. 14 Earth days. The formal lunar day is therefore the time of a full lunar day-night cycle.

  4. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    176 days [4] Venus: −243.0226 days [ii] [5] −243 d 0 h 33 m: −116.75 days [6] Earth: 0.99726968 days [3] [iii] 0 d 23 h 56 m 4.0910 s: 1.00 days (24 h 00 m 00 s) Moon: 27.321661 days [7] (equal to sidereal orbital period due to spin-orbit locking, a sidereal lunar month) 27 d 7 h 43 m 11.5 s: 29.530588 days [7] (equal to synodic orbital ...

  5. Synodic day - Wikipedia

    en.wikipedia.org/wiki/Synodic_day

    A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars [1] and is the basis of sidereal time.

  6. Lunar month - Wikipedia

    en.wikipedia.org/wiki/Lunar_month

    Because of these two variations in angular rate, the actual time between lunations may vary from about 29.274 days (or 29 d 6 h 35 min) to about 29.829 days (or 29 d 19 h 54 min). [6] The average duration in modern times is 29.53059 days with up to seven hours variation about the mean in any given year.

  7. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    Given enough time, this would create a mutual tidal locking between Earth and the Moon. The length of Earth's day would increase and the length of a lunar month would also increase. Earth's sidereal day would eventually have the same length as the Moon's orbital period, about 47 times the length of

  8. Sidereal year - Wikipedia

    en.wikipedia.org/wiki/Sidereal_year

    The sidereal year is 20 min 24.5 s longer than the mean tropical year at J2000.0 (365.242 190 402 ephemeris days). [1] At present, the rate of axial precession corresponds to a period of 25,772 years, [3] so sidereal year is longer than tropical year by 1,224.5 seconds (20 min 24.5 s, ~365.24219*86400/25772).

  9. ΔT (timekeeping) - Wikipedia

    en.wikipedia.org/wiki/ΔT_(timekeeping)

    Combining these two effects, the net acceleration (actually a deceleration) of the rotation of the Earth, or the change in the length of the mean solar day (LOD), is +1.7 ms/day/cy or +62 s/cy 2 or +46.5 ns/day 2. This matches the average rate derived from astronomical records over the past 27 centuries. [5] [6] [7]