enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perfect square - Wikipedia

    en.wikipedia.org/wiki/Perfect_square

    A perfect square is an element of algebraic structure that is equal to the square of another element. Square number, a perfect square integer. Entertainment

  3. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.

  4. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...

  5. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    The only square-free perfect number is 6. [57] Related concepts ... By definition, a perfect number is a fixed point of the restricted divisor function s(n) = ...

  6. Palindromic number - Wikipedia

    en.wikipedia.org/wiki/Palindromic_number

    The palindromic square numbers are 0, 1, 4, 9, 121 ... Zero is written 0 in any base and is also palindromic by definition. ... or else it is a perfect square = ...

  7. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    Approximate constructions with any given non-perfect accuracy exist, and many such constructions have been found. Despite the proof that it is impossible, attempts to square the circle have been common in pseudomathematics (i.e. the work of mathematical cranks). The expression "squaring the circle" is sometimes used as a metaphor for trying to ...

  8. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    () is always a perfect square. [10] As it is only a necessary condition but not a sufficient one, it can be used in checking if a given triple of numbers is not a Pythagorean triple. For example, the triples {6, 12, 18} and {1, 8, 9} each pass the test that ( c − a )( c − b )/2 is a perfect square, but neither is a Pythagorean triple.

  9. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...