enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  3. Gravity gradiometry - Wikipedia

    en.wikipedia.org/wiki/Gravity_gradiometry

    Gravity gradiometry is the study of variations in the Earth's gravity field via measurements of the spatial gradient of gravitational acceleration. The gravity gradient tensor is a 3x3 tensor representing the partial derivatives, along each coordinate axis , of each of the three components of the acceleration vector ( g = [ g x g y g z ] T ...

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Based on this, Hutton's 1778 result is equivalent to G ≈ 8 × 10 −11 m 3 ⋅kg −1 ⋅s −2. Diagram of torsion balance used in the Cavendish experiment performed by Henry Cavendish in 1798, to measure G, with the help of a pulley, large balls hung from a frame were rotated into position next to the small balls.

  5. Magnetic declination - Wikipedia

    en.wikipedia.org/wiki/Magnetic_declination

    Magnetic declination (also called magnetic variation) is the angle between magnetic north and true north at a particular location on the Earth's surface. The angle can change over time due to polar wandering .

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...

  7. Geoid - Wikipedia

    en.wikipedia.org/wiki/Geoid

    The above equation describes the Earth's gravitational potential, not the geoid itself, at location ,,, the co-ordinate being the geocentric radius, i.e., distance from the Earth's centre. The geoid is a particular equipotential surface, [ 27 ] and is somewhat involved to compute.

  8. What will happen when Earth's north and south poles flip

    www.aol.com/article/news/2019/02/05/what-will...

    This video shows what will happen when Earth's magnetic poles flip. Note: The following is a transcript: Did you know that Earth has two North Poles? There’s the geographic North Pole, which ...

  9. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    The component due to the Earth's rotation can then be included, if appropriate, based on a sidereal day relative to the stars (≈366.24 days/year) rather than on a solar day (≈365.24 days/year). That component is perpendicular to the axis of rotation rather than to the surface of the Earth.