Search results
Results from the WOW.Com Content Network
Figures 2-5 further illustrate construction of Bode plots. This example with both a pole and a zero shows how to use superposition. To begin, the components are presented separately. Figure 2 shows the Bode magnitude plot for a zero and a low-pass pole, and compares the two with the Bode straight line plots.
Four powers of 10 spanning a range of three decades: 1, 10, 100, 1000 (10 0, 10 1, 10 2, 10 3) Four grids spanning three decades of resolution: One thousand 0.001s, one-hundred 0.01s, ten 0.1s, one 1. One decade (symbol dec [1]) is a unit for measuring ratios on a logarithmic scale, with one decade corresponding to a ratio of 10 between two ...
The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...
# set terminal svg enhanced size 875 1250 fname "Times" fsize 25 set terminal postscript enhanced portrait dashed lw 1 "Helvetica" 14 set output "bode.ps" # ugly part of something G(w,n) = 0 * w * n + 100000 # 1 / (sqrt(1 + w**(2*n))) dB(x) = 0 + x + 100000 # 20 * log10(abs(x)) P(w) = w * 0 + 200 # -atan(w)*180/pi # Gridlines set grid # Set x axis to logarithmic scale set logscale x 10 set ...
The final step depends on the geometry of the waveguide. The easiest geometry to solve is the rectangular waveguide. In that case, the remainder of the Laplacian can be evaluated to its characteristic equation by considering solutions of the form ψ ( x , y , z , t ) = ψ 0 e i ( ω t − k z z − k x x − k y y ) . {\displaystyle \psi (x,y,z ...
Top: Output signal as a function of time. Middle: Input signal as a function of time. Bottom: Resulting Lissajous curve when output is plotted as a function of the input. In this particular example, because the output is 90 degrees out of phase from the input, the Lissajous curve is a circle, and is rotating counterclockwise.
The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the system itself, as a function of time. The formulation and solution of rigid body dynamics is an important tool in the computer simulation of mechanical systems.
= where is the relaxation time of the particle (the time constant in the exponential decay of the particle velocity due to drag), is the fluid velocity of the flow well away from the obstacle, and is the characteristic dimension of the obstacle (typically its diameter) or a characteristic length scale in the flow (like boundary layer thickness ...