Search results
Results from the WOW.Com Content Network
2 Names of polyhedra by number of sides. ... There are generic geometric names for the most common polyhedra. The 5 Platonic solids are called a ... 5 / 3 .4.3.4.
A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.
Several nonconvex uniform polyhedra, including the tetrahemihexahedron, cubohemioctahedron, octahemioctahedron, small rhombihexahedron, small icosihemidodecahedron, and small dodecahemidodecahedron, have antiparallelograms as their vertex figures, the cross-sections formed by slicing the polyhedron by a plane that passes near a vertex, perpendicularly to the axis between the vertex and the center.
A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron. A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them.
These semiregular solids can be fully specified by a vertex configuration: a listing of the faces by number of sides, in order as they occur around a vertex. For example: 3.5.3.5 represents the icosidodecahedron, which alternates two triangles and two pentagons around each vertex. In contrast: 3.3.3.5 is a pentagonal antiprism.
Each polyhedron lies in Euclidean 4-dimensional space as a parallel cross section through the 600-cell (a hyperplane). In the curved 3-dimensional space of the 600-cell's boundary surface envelope, the polyhedron surrounds the vertex V the way it surrounds its own center. But its own center is in the interior of the 600-cell, not on its surface.
V(3.4. 3 / 2 .4) π − π / 2 90° Hexahemioctacron (Dual of cubohemioctahedron) — V(4.6. 4 / 3 .6) π − π / 3 120° Octahemioctacron (Dual of octahemioctahedron) — V(3.6. 3 / 2 .6) π − π / 3 120° Small dodecahemidodecacron (Dual of small dodecahemidodecacron) — V(5.10. 5 / 4 ...
the radius of the sphere passing through the eight order three vertices is exactly equal to the length of the sides: = The surface area A and the volume V of the rhombic dodecahedron with edge length a are: [ 4 ] A = 8 2 a 2 ≈ 11.314 a 2 , V = 16 3 9 a 3 ≈ 3.079 a 3 . {\displaystyle {\begin{aligned}A&=8{\sqrt {2}}a^{2}&\approx 11.314a^{2 ...