Search results
Results from the WOW.Com Content Network
The Euler equations can be generalized to any simple Lie algebra. [1] The original Euler equations come from fixing the Lie algebra to be s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} , with generators t 1 , t 2 , t 3 {\displaystyle {t_{1},t_{2},t_{3}}} satisfying the relation [ t a , t b ] = ϵ a b c t c {\displaystyle [t_{a},t_{b}]=\epsilon ...
For example, if a person places a force of 10 N at the terminal end of a wrench that is 0.5 m long (or a force of 10 N acting 0.5 m from the twist point of a wrench of any length), the torque will be 5 N⋅m – assuming that the person moves the wrench by applying force in the plane of movement and perpendicular to the wrench.
kg m s −1: M L T −1: Angular momentum about a position point r 0, L, J, S = Most of the time we can set r 0 = 0 if particles are orbiting about axes intersecting at a common point. kg m 2 s −1: M L 2 T −1: Moment of a force about a position point r 0, Torque. τ, M
The simplest kind of couple consists of two equal and opposite forces whose lines of action do not coincide. This is called a "simple couple". [1] The forces have a turning effect or moment called a torque about an axis which is normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre.
Therefore, the spring constant k, and each element of the tensor κ, is measured in newtons per meter (N/m), or kilograms per second squared (kg/s 2). For continuous media, each element of the stress tensor σ is a force divided by an area; it is therefore measured in units of pressure, namely pascals (Pa, or N/m 2 , or kg/(m·s 2 ).
The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body. Moments of inertia may be expressed in units of kilogram metre squared (kg·m 2) in SI units and pound-foot-second squared (lbf·ft·s 2) in imperial or US units.
Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.
Torque density is a measure of the torque-carrying capability of a mechanical component. It is the ratio of torque capability to volume and is expressed in units of torque per volume . Torque density is a system property since it depends on the design of each element of the component being examined and their interconnection.