Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
where v is the relative velocity between frames in the x-direction, c is the speed of light, and = (lowercase gamma) is the Lorentz factor. Here, v is the parameter of the transformation, for a given boost it is a constant number, but can take a continuous range of values.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
At any time after t = t′ = 0, xx′ is not zero, so dividing both sides of the equation by xx′ results in =, which is called the "Lorentz factor". When the transformation equations are required to satisfy the light signal equations in the form x = ct and x′ = ct′, by substituting the x and x'-values, the same technique produces the same ...
is called the Lorentz factor and c is the speed of light in free space. Lorentz factor (γ) is the same in both systems. The inverse transformations are the same except for the substitution v → −v. An equivalent, alternative expression is: [3]
An equation is said to be Lorentz covariant if it can be written in terms of Lorentz covariant quantities (confusingly, some use the term invariant here). The key property of such equations is that if they hold in one inertial frame, then they hold in any inertial frame; this follows from the result that if all the components of a tensor vanish ...
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
Here, 1 / 2 σ μν and F μν stand for the Lorentz group generators in the Dirac space, and the electromagnetic tensor respectively, while A μ is the electromagnetic four-potential. An example for such a particle [9] is the spin 1 / 2 companion to spin 3 / 2 in the D (½,1) ⊕ D (1,½) representation space of the ...