Ads
related to: quadratic word problems algebra 1 without logs examples worksheet 7th
Search results
Results from the WOW.Com Content Network
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
For instance, if the one solving the math word problem has a limited understanding of the language (English, Spanish, etc.) they are more likely to not understand what the problem is even asking. In Example 1 (above), if one does not comprehend the definition of the word "spent," they will misunderstand the entire purpose of the word problem.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
A classical example of a word equation is the commutation equation =, in which is an unknown and is a constant word. It is well-known [ 4 ] that the solutions of the commutation equation are exactly those morphisms h {\displaystyle h} mapping x {\displaystyle x} to some power of w {\displaystyle w} .
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4 , but it splits over F 16 , where it has the two roots ab and ab + a , where b is a root of x 2 + x + a in F 16 .
Ads
related to: quadratic word problems algebra 1 without logs examples worksheet 7th