Search results
Results from the WOW.Com Content Network
Converting a double-precision binary floating-point number to a decimal string is a common operation, but an algorithm producing results that are both accurate and minimal did not appear in print until 1990, with Steele and White's Dragon4. Some of the improvements since then include:
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
However, on modern standard computers (i.e., implementing IEEE 754), one may safely assume that the endianness is the same for floating-point numbers as for integers, making the conversion straightforward regardless of data type. Small embedded systems using special floating-point formats may be another matter, however.
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
Note that 1 represents equality in the last line above. This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways: float to int causes truncation, i.e., removal of the fractional part.
From binary32 to bfloat16. When bfloat16 was first introduced as a storage format, [15] the conversion from IEEE 754 binary32 (32-bit floating point) to bfloat16 is truncation (round toward 0). Later on, when it becomes the input of matrix multiplication units, the conversion can have various rounding mechanisms depending on the hardware platforms.
The representation has a limited precision. For example, only 15 decimal digits can be represented with a 64-bit real. If a very small floating-point number is added to a large one, the result is just the large one. The small number was too small to even show up in 15 or 16 digits of resolution, and the computer effectively discards it.
The standard type hierarchy of Python 3. In computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. [1]