Search results
Results from the WOW.Com Content Network
Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.
An object at height h above the ground and slant range R forms an angle α that can be calculated through sin α = h / R.By re-arrangement, R = h / sin α, or R = h csc α. The radar equation states that the signal received from an object, P e, varies inversely with the 4th power of range and directly as the square of the antenna gain, G, such that P e ~ G 2 / R 4.
The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power.
The scale of dBZ values can be seen along the bottom of the image. Decibel relative to Z, or dBZ, is a logarithmic dimensionless technical unit used in radar. It is mostly used in weather radar, to compare the equivalent reflectivity factor (Z) of a remote object (in mm 6 per m 3) to the return of a droplet of rain with a diameter of 1 mm (1 mm 6 per m 3). [1]
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
Fluctuation loss is an effect seen in radar systems as the target object moves or changes its orientation relative to the radar system. It was extensively studied during the 1950s by Peter Swerling, who introduced the Swerling models to allow the effect to be simulated.
This page was last edited on 26 September 2019, at 06:28 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
STC addresses this problem by implementing a reverse gain curve with the same characteristics as the radar equation, that is, a / dependency or some function close to that (often there are discrete steps). This dramatically damps down amplification of signals received shortly after the detection pulse is sent, preventing them from saturating ...