Search results
Results from the WOW.Com Content Network
General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).
TechPowerUp GPU-Z (or just GPU-Z) is a lightweight utility designed to provide information about video cards and GPUs. [2] The program displays the specifications of Graphics Processing Unit (often shortened to GPU) and its memory; also displays temperature, core frequency, memory frequency, GPU load and fan speeds.
ROCm [3] is an Advanced Micro Devices (AMD) software stack for graphics processing unit (GPU) programming. ROCm spans several domains: general-purpose computing on graphics processing units (GPGPU), high performance computing (HPC), heterogeneous computing.
This number is generally used as a maximum throughput number for the GPU and generally, a higher fill rate corresponds to a more powerful (and faster) GPU. Memory subsection. Bandwidth – Maximum theoretical bandwidth for the processor at factory clock with factory bus width. GHz = 10 9 Hz. Bus type – Type of memory bus or buses used.
A GPU cluster is a computer cluster in which each node is equipped with a graphics processing unit (GPU). By harnessing the computational power of modern GPUs via general-purpose computing on graphics processing units (GPGPU), very fast calculations can be performed with a GPU cluster. Titan, the first supercomputer to use GPUs
A like for like comparison between desktop CPUs and GPGPUs is problematic because of algorithmic & structural differences. For example, a 2.66 GHz Intel Core 2 Duo can perform a maximum of 25 GFLOPs (25 billion single-precision floating-point operations per second) if optimally using SSE and streaming memory access so the prefetcher works perfectly.
Components of a GPU. A graphics processing unit (GPU) is a specialized electronic circuit initially designed for digital image processing and to accelerate computer graphics, being present either as a discrete video card or embedded on motherboards, mobile phones, personal computers, workstations, and game consoles.
CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels. [5] In addition to drivers and runtime kernels, the CUDA platform includes compilers, libraries and developer tools to help programmers accelerate their applications.