enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unpaired electron - Wikipedia

    en.wikipedia.org/wiki/Unpaired_electron

    In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain two electrons ( electron pair ) with opposite spins .

  3. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    Each has two electrons of opposite spin in the π* level so that S = 0 and the multiplicity is 2S + 1 = 1 in consequence. In the first excited state, the two π* electrons are paired in the same orbital, so that there are no unpaired electrons. In the second excited state, however, the two π* electrons occupy different orbitals with opposite spin.

  4. Electron pair - Wikipedia

    en.wikipedia.org/wiki/Electron_pair

    This also limits the number of electrons in the same orbital to two. The pairing of spins is often energetically favorable, and electron pairs therefore play a large role in chemistry. They can form a chemical bond between two atoms, or they can occur as a lone pair of valence electrons. They also fill the core levels of an atom.

  5. Nitrogen - Wikipedia

    en.wikipedia.org/wiki/Nitrogen

    It, therefore, has five valence electrons in the 2s and 2p orbitals, three of which (the p-electrons) are unpaired. It has one of the highest electronegativities among the elements (3.04 on the Pauling scale), exceeded only by chlorine (3.16), oxygen (3.44), and fluorine (3.98).

  6. Hund's rule of maximum multiplicity - Wikipedia

    en.wikipedia.org/wiki/Hund's_Rule_of_Maximum...

    The manganese (Mn) atom has a 3d 5 electron configuration with five unpaired electrons all of parallel spin, corresponding to a 6 S ground state. [4] The superscript 6 is the value of the multiplicity , corresponding to five unpaired electrons with parallel spin in accordance with Hund's rule.

  7. Electronic effect - Wikipedia

    en.wikipedia.org/wiki/Electronic_effect

    Electronic spin state at it simplest describes the number of unpaired electrons in a molecule. Most molecules including the proteins, carbohydrates, and lipids that make up the majority of life have no unpaired electrons even when charged. Such molecules are called singlet molecules, since their paired electrons have only one spin state.

  8. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The bond order is equal to the number of bonding electrons minus the number of antibonding electrons, divided by 2. In this example, there are 2 electrons in the bonding orbital and none in the antibonding orbital; the bond order is 1, and there is a single bond between the two hydrogen atoms. [citation needed]

  9. Radical (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Radical_(chemistry)

    In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. [1] [2] With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.