Search results
Results from the WOW.Com Content Network
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases. Nucleophilic describes the affinity of a nucleophile to bond with positively charged ...
The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R-Br under basic conditions, where the attacking nucleophile is hydroxyl (OH −) and the leaving group is bromide (Br −).
Nucleophile strength is also affected by charge and electronegativity: nucleophilicity increases with increasing negative charge and decreasing electronegativity. For example, OH − is a better nucleophile than water, and I − is a better nucleophile than Br − (in polar protic solvents). In a polar aprotic solvent, nucleophilicity increases ...
A nucleophilic aromatic substitution (S N Ar) is a substitution reaction in organic chemistry in which the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring. Aromatic rings are usually nucleophilic, but some aromatic compounds do undergo nucleophilic substitution.
Addition of a nucleophile to carbon–heteroatom double or triple bonds such as >C=O or -C≡N show great variety. These types of bonds are polar (have a large difference in electronegativity between the two atoms); consequently, their carbon atoms carries a partial positive charge. This makes the molecule an electrophile, and the carbon atom ...
The nucleophile is polarised and oriented by the base, which is itself bound and stabilised by the acid. [24] Catalysis is performed in two stages. First, the activated nucleophile attacks the carbonyl carbon and forces the carbonyl oxygen to accept an electron pair, leading to a tetrahedral intermediate. The resulting build-up of negative ...
This palladium/platinum sensing ability is driven by the Tsuji–Trost reaction. The sensor contains an allyl group with the fluorescein functioning as the leaving group. The π-allyl complex is formed and after a nucleophile attacks, the fluorescein is released, yielding a dramatic increase in fluorescence. [29] [30]
In 1962, Edwards and Pearson (the latter of HSAB theory) introduced the phrase alpha effect for this anomaly. He offered the suggestion that the effect was caused by a transition state (TS) stabilization effect: on entering the TS the free electron pair on the nucleophile moves away from the nucleus, causing a partial positive charge which can be stabilized by an adjacent lone pair as for ...