Search results
Results from the WOW.Com Content Network
A second of arc, arcsecond (abbreviated as arcsec), or arc second, denoted by the symbol ″, [2] is a unit of angular measurement equal to 1 / 60 of a minute of arc, 1 / 3600 of a degree, [1] 1 / 1 296 000 of a turn, and π / 648 000 (about 1 / 206 264.8 ) of a radian.
Or, "the arc whose cosine is x" is the same as "the angle whose cosine is x", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. [5] In computer programming languages, the inverse trigonometric functions are often called by the abbreviated forms asin , acos , atan .
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = (″) and the above approximation follows when tan X is replaced by X.
This is analogous to the way circular angle measure is the arc length of an arc of the unit circle in the Euclidean plane or twice the area of the corresponding circular sector. Alternately hyperbolic angle is the area of a sector of the hyperbola = Some authors call the inverse hyperbolic functions hyperbolic area functions.
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [ 4 ] It is not an SI unit —the SI unit of angular measure is the radian —but it is mentioned in the SI brochure as an accepted unit . [ 5 ]
Arc: any connected part of a circle. Specifying two end points of an arc and a centre allows for two arcs that together make up a full circle. Centre: the point equidistant from all points on the circle. Chord: a line segment whose endpoints lie on the circle, thus dividing a circle into two segments.
The arc BC subtends an angle of magnitude a at the centre and therefore OB → · OC → = cos a. Introduce a Cartesian basis with OA → along the z-axis and OB → in the xz-plane making an angle c with the z-axis. The vector OC → projects to ON in the xy-plane and the angle between ON and the x-axis is A. Therefore, the three vectors have ...