Search results
Results from the WOW.Com Content Network
In chemistry, volatility is a material quality which describes how readily a substance vaporizes. At a given temperature and pressure , a substance with high volatility is more likely to exist as a vapour , while a substance with low volatility is more likely to be a liquid or solid .
Total dissolved solids include both volatile and non-volatile solids. Volatile solids are ones that can easily go from a solid to a gaseous state. Non-volatile solids must be heated to a high temperature, typically 550 °C, in order to achieve this state change. Examples of non-volatile substances include salts and sugars. [3]
For example, the strong electrolyte MgCl 2 dissociates into one Mg 2+ ion and two Cl − ions, so that if ionization is complete, i = 3 and =, where is calculated with moles of solute i times initial moles and moles of solvent same as initial moles of solvent before dissociation.
They can be produced from an incomplete metabolism of carbohydrates, fats, and proteins. All acids produced in the body are nonvolatile except carbonic acid, which is the sole volatile acid. Common nonvolatile acids in humans are lactic acid, phosphoric acid, sulfuric acid, acetoacetic acid, and beta-hydroxybutyric acid.
Freezing-point depression is a drop in the maximum temperature at which a substance freezes, caused when a smaller amount of another, non-volatile substance is added. Examples include adding salt into water (used in ice cream makers and for de-icing roads), alcohol in water, ethylene or propylene glycol in water (used in antifreeze in cars ...
Henry's law has been shown to apply to a wide range of solutes in the limit of infinite dilution (x → 0), including non-volatile substances such as sucrose. In these cases, it is necessary to state the law in terms of chemical potentials. For a solute in an ideal dilute solution, the chemical potential depends only on the concentration.
Schematic diagram of the CVT process. Point A is the reaction between the starting materials and the transport agent to form volatile intermediates. These intermediates then are free to move around the inside of the tube via diffusion or convection (point B), and when they reach point C some of the gaseous species react to form solid products.
Steam distillation is a separation process that consists of distilling water together with other volatile and non-volatile components. The steam from the boiling water carries the vapor of the volatiles to a condenser; both are cooled and return to the liquid or solid state, while the non-volatile residues remain behind in the boiling container.