Search results
Results from the WOW.Com Content Network
There exist two main types of spatial heterogeneity. The spatial local heterogeneity categorises the geographic phenomena whose its attributes' values are significantly similar within a directly local neighbourhood, but which significantly differ in the nearby surrounding-areas beyond this directly local neighbourhood (e.g. hot spots, cold spots).
The possibility of spatial heterogeneity suggests that the estimated degree of autocorrelation may vary significantly across geographic space. Local spatial autocorrelation statistics provide estimates disaggregated to the level of the spatial analysis units, allowing assessment of the dependency relationships across space.
In landscape ecology, spatial configuration describes the spatial pattern of patches in a landscape. Most traditional spatial configuration measurements take into account aspects of patches within the landscape, including patches' size, shape, density, connectivity and fractal dimension .
Spatial ecology studies the ultimate distributional or spatial unit occupied by a species.In a particular habitat shared by several species, each of the species is usually confined to its own microhabitat or spatial niche because two species in the same general territory cannot usually occupy the same ecological niche for any significant length of time.
Although the term metapopulation had not yet been coined, the environmental factors of spatial heterogeneity and habitat patchiness would later describe the conditions of a metapopulation relating to how groups of spatially separated populations of species interact with one another. Huffaker's experiment is significant because it showed how ...
English: Soil fauna, climatic gradients and soil heterogeneity Linking hotspots and hot moments of soil fauna to climatic gradients and soil heterogeneity: Historical factors (climate, parent material) shape our landscapes (both above- and below-ground), but the regional/local abiotic conditions constraint biological activities.
MAUP can be used as an analytical tool to help understand spatial heterogeneity and spatial autocorrelation. This topic is of particular importance because in some cases data aggregation can obscure a strong correlation between variables, making the relationship appear weak or even negative. Conversely, MAUP can cause random variables to appear ...
In GWR, regression coefficients (parameters) are estimated locally for each geographic location or point, allowing for the modeling of spatial heterogeneity. [6] Geographically Weighted Regression is a cornerstone of GIS and spatial analysis, and is built into ArcGIS, as a package for the R (programming language), and as a plugin for QGIS.