Search results
Results from the WOW.Com Content Network
Data quality assurance is the process of data profiling to discover inconsistencies and other anomalies in the data, as well as performing data cleansing [17] [18] activities (e.g. removing outliers, missing data interpolation) to improve the data quality.
Larry English prefers the term "characteristics" to dimensions. [6] In fact, a considerable amount of information quality research involves investigating and describing various categories of desirable attributes (or dimensions) of data. Research has recently shown the huge diversity of terms and classification structures used. [7]
Quality of Data (QoD) is a designation coined by L. Veiga, that specifies and describes the required Quality of Service of a distributed storage system from the Consistency point of view of its data. It can be used to support big data management frameworks, Workflow management, and HPC systems (mainly for data replication and consistency).
ISO 8000 is the international standard for Data Quality and Enterprise Master Data.Widely adopted internationally [1] [2] [3] it describes the features and defines the requirements for standard exchange of Master Data among business partners.
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").
The Data Owner is responsible for the requirements for data quality, data security, etc. as well as for compliance with data governance and data management procedures. The Data Owner should also be funding improvement projects in case of deviations from the requirements.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
While data governance initiatives can be driven by a desire to improve data quality, they are often driven by C-level leaders responding to external regulations. In a recent report conducted by CIO WaterCooler community, 54% stated the key driver was efficiencies in processes; 39% - regulatory requirements; and only 7% customer service. [6]