enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...

  3. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    In fluid mechanics, Helmholtz's theorems, named after Hermann von Helmholtz, describe the three-dimensional motion of fluid in the vicinity of vortex lines. These theorems apply to inviscid flows and flows where the influence of viscous forces are small and can be ignored.

  4. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    A simple example is a semi-infinite domain bounded by a rigid wall and filled with viscous fluid. [10] At time t = 0 {\displaystyle t=0} the wall is made to move with constant speed U {\displaystyle U} in a fixed direction (for definiteness, say the x {\displaystyle x} direction and consider only the x − y {\displaystyle x-y} plane), one can ...

  5. Hydraulic engineering - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_engineering

    Hydraulic engineering is the application of the principles of fluid mechanics to problems dealing with the collection, storage, control, transport, regulation, measurement, and use of water. [1] Before beginning a hydraulic engineering project, one must figure out how much water is involved.

  6. Pascal's law - Wikipedia

    en.wikipedia.org/wiki/Pascal's_law

    Pascal's law (also Pascal's principle [1] [2] [3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. [4]

  7. Viscous damping - Wikipedia

    en.wikipedia.org/wiki/Viscous_damping

    In continuum mechanics, viscous damping is a formulation of the damping phenomena, in which the source of damping force is modeled as a function of the volume, shape, and velocity of an object traversing through a real fluid with viscosity. [1] Typical examples of viscous damping in mechanical systems include: Fluid films between surfaces

  8. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    In this model the red fluid – initially on top, and afterwards below – represents a more dense fluid and the blue fluid represents one which is less dense. The Rayleigh–Taylor instability is another application of hydrodynamic stability and also occurs between two fluids but this time the densities of the fluids are different. [ 6 ]

  9. Fluid - Wikipedia

    en.wikipedia.org/wiki/Fluid

    In physics, a fluid is a liquid, gas, or other material that may continuously move and deform (flow) under an applied shear stress, or external force. [1] They have zero shear modulus , or, in simpler terms, are substances which cannot resist any shear force applied to them.