enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  3. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  4. Algebraic operation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_operation

    In mathematics, a basic algebraic operation is any one of the common operations of elementary algebra, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). [1] These operations may be performed on numbers, in which case they are often called arithmetic operations.

  5. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e 0 = 1 , and e x is invertible with inverse e − x for any x in B .

  6. Radical symbol - Wikipedia

    en.wikipedia.org/wiki/Radical_symbol

    The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.

  7. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  8. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In the same way as the square super-root, terminology for other super-roots can be based on the normal roots: "cube super-roots" can be expressed as ; the "4th super-root" can be expressed as ; and the "n th super-root" is .

  9. Zenzizenzizenzic - Wikipedia

    en.wikipedia.org/wiki/Zenzizenzizenzic

    Jeake's text appears to designate a written exponent of 0 as being equal to an "absolute number, as if it had no Mark", thus using the notation x 0 to refer to an independent term of a polynomial, while a written exponent of 1, in his text, denotes "the Root of any number" (using root with the meaning of the base number, i.e. its first power x ...