Search results
Results from the WOW.Com Content Network
The system of six joint axes S i and five common normal lines A i,i+1 form the kinematic skeleton of the typical six degree-of-freedom serial robot. Denavit and Hartenberg introduced the convention that z-coordinate axes are assigned to the joint axes S i and x-coordinate axes are assigned to the common normals A i , i +1 .
The forward kinematic equations can be used as a method in 3D computer graphics for animating models. The essential concept of forward kinematic animation is that the positions of particular parts of the model at a specified time are calculated from the position and orientation of the object, together with any information on the joints of an ...
For each joint of the kinematic chain, an origin point q and an axis of action are selected for the zero configuration, using the coordinate frame of the base. In the case of a prismatic joint, the axis of action v is the vector along which the joint extends; in the case of a revolute joint, the axis of action ω the vector normal to the rotation.
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.
The solution is the matrix exponential [ T ( t ) ] = e [ S ] t . {\displaystyle [T(t)]=e^{[S]t}.} This formulation can be generalized such that given an initial configuration g (0) in SE( n ), and a twist ξ in se( n ), the homogeneous transformation to a new location and orientation can be computed with the formula,
Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...
The combination of a rotation and translation in the plane R 2 can be represented by a certain type of 3×3 matrix known as a homogeneous transform. The 3×3 homogeneous transform is constructed from a 2×2 rotation matrix A(φ) and the 2×1 translation vector d = (d x, d y), as: [(,)] = [()] = [ ].