Search results
Results from the WOW.Com Content Network
The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during metaphase of mitosis or meiosis that prevents the separation of the duplicated chromosomes until each chromosome is properly attached to the ...
Micrograph showing condensed chromosomes in blue, kinetochores in pink, and microtubules in green during metaphase of mitosis. In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells.
These chromosomes, carrying genetic information, align in the equator of the cell between the spindle poles at the metaphase plate, before being separated into each of the two daughter nuclei. This alignment marks the beginning of metaphase. [2] Metaphase accounts for approximately 4% of the cell cycle's duration. [citation needed]
2.3.4 Metaphase. 2.3.5 Anaphase ... Moreover, researchers have found that if rounding is heavily suppressed it may result in spindle defects, primarily pole ...
During mitosis, there are five stages of cell division: Prophase, Prometaphase, Metaphase, Anaphase, and Telophase. During prophase, two aster-covered centrosomes migrate to opposite sides of the nucleus in preparation of mitotic spindle formation. During prometaphase there is fragmentation of the nuclear envelope and formation of the mitotic ...
The spindle checkpoint, or SAC (for spindle assembly checkpoint), also known as the mitotic checkpoint, is a cellular mechanism responsible for detection of: correct assembly of the mitotic spindle; attachment of all chromosomes to the mitotic spindle in a bipolar manner; congression of all chromosomes at the metaphase plate.
There are many checkpoints in the cell cycle, [1] but the three major ones are: the G1 checkpoint, also known as the Start or restriction checkpoint or Major Checkpoint; the G2/M checkpoint; and the metaphase-to-anaphase transition, also known as the spindle checkpoint. [2]
Plant cells lack centrioles or spindle pole bodies except in their flagellate male gametes, and they are entirely absent in the conifers and flowering plants. [4] Instead, the nuclear envelope itself appears to function as the main MTOC for microtubule nucleation and spindle organization during plant cell mitosis.