enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...

  3. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...

  4. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    This algorithm transmits O(n 2 /p 2/3) words per processor, which is asymptotically optimal. [28] However, this requires replicating each input matrix element p 1/3 times, and so requires a factor of p 1/3 more memory than is needed to store the inputs. This algorithm can be combined with Strassen to further reduce runtime.

  5. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The best known lower bound for matrix-multiplication complexity is Ω(n 2 log(n)), for bounded coefficient arithmetic circuits over the real or complex numbers, and is due to Ran Raz. [31] The exponent ω is defined to be a limit point, in that it is the infimum of the exponent over all matrix multiplication algorithms. It is known that this ...

  6. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    If A is a matrix with integer or rational entries and we seek a solution in arbitrary-precision rationals, then a p-adic approximation method converges to an exact solution in O(n 4 log 2 n), assuming standard O(n 3) matrix multiplication is used. [15]

  7. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB; the summation involves a single term S = Ø, and the formula states 1 = 1, with both sides given by the determinant of the 0×0 matrix. For m = 1, the summation ranges over the collection ([]) of the n different singletons taken from [n], and both ...

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = ⁡ = ⁡ for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...

  9. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.