Search results
Results from the WOW.Com Content Network
The PWR2 was developed for the Vanguard-class Trident missile submarines and is a development of the PWR1. The first PWR2 reactor was completed in 1985 with testing beginning in August 1987 at the Vulcan Naval Reactor Test Establishment. The reactor fuel is highly enriched uranium (HEU) enriched to between 93% and 97%. The latest PWR2 reactor ...
The boats of the Astute class are powered by a Rolls-Royce PWR2 (Core H) (a pressurised water reactor) and fitted with a pump-jet propulsor. The PWR2 reactor, which was developed for the Vanguard -class ballistic missile submarines, has a 25-year lifespan without the need for refuelling.
The first reactor, PWR1, is known as Dounreay Submarine Prototype 1 (DSMP1). The reactor plant was recognised by the Royal Navy as one of Her Majesty's Submarines (HMS) and was commissioned as HMS Vulcan in 1963. It went critical in 1965. HMS Vulcan is a Rolls-Royce PWR 1 reactor plant and tested Cores A, B and Z before being shut down in 1984 ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
The Vanguard class is a class of nuclear-powered ballistic missile submarines (SSBNs) in service with the Royal Navy. [3] The class was introduced in 1994 as part of the Trident nuclear programme, and comprises four vessels: Vanguard, Victorious, Vigilant and Vengeance, built between 1986 and 1999 at Barrow-in-Furness by Vickers Shipbuilding and Engineering, now owned by BAE Systems. [4]
GE further developed the BWR-1 design with the 70 MW Big Rock Point (9×9, 11×11, 12×12) reactor, which (like all GE BWR models following Dresden 1) used the more economical direct cycle method of heat transfer, but disposed with the external recirculation pumps in favor of natural circulation (an unusual strategy that only the 55 MW ...
The finished fuel rods are grouped in fuel assemblies, called fuel bundles, that are then used to build the core of the reactor. A typical PWR has fuel assemblies of 200 to 300 rods each, and a large reactor would have about 150–250 such assemblies with 80–100 tons of uranium in all.
In April 1986, two special tests were performed on the EBR-II, in which the main primary cooling pumps were shut off with the reactor at full power (62.5 megawatts, thermal). By not allowing the normal shutdown systems to interfere, the reactor power dropped to near zero within about 300 seconds. No damage to the fuel or the reactor resulted.