Search results
Results from the WOW.Com Content Network
These are laws of Boolean algebra whence the underlying poset of a Boolean algebra forms a distributive lattice. Given a lattice with a bottom element 0 and a top element 1, a pair x , y of elements is called complementary when x ∧ y = 0 and x ∨ y = 1 , and we then say that y is a complement of x and vice versa.
The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.
For a complete boolean algebra infinite de-Morgan's laws hold. A Boolean algebra is complete if and only if its Stone space of prime ideals is extremally disconnected. Sikorski's extension theorem states that if A is a subalgebra of a Boolean algebra B, then any homomorphism from A to a complete Boolean algebra C can be extended to a morphism ...
A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...
Boolean function; Boolean-valued function; Boolean-valued model; Boolean satisfiability problem; Boolean differential calculus; Indicator function (also called the characteristic function, but that term is used in probability theory for a different concept)
Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
In C (and some other languages descended from C), double negation (!!x) is used as an idiom to convert x to a canonical Boolean, ie. an integer with a value of either 0 or 1 and no other. Although any integer other than 0 is logically true in C and 1 is not special in this regard, it is sometimes important to ensure that a canonical value is ...