enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [9] for a total of approximately 2n 3 /3 operations.

  4. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  5. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The cost of solving a system of linear equations is approximately floating-point operations if the matrix has size . This makes it twice as fast as algorithms based on QR decomposition , which costs about 4 3 n 3 {\textstyle {\frac {4}{3}}n^{3}} floating-point operations when Householder reflections are used.

  7. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    A similar method can be used for any slowly converging iterative process. It was devised simultaneously by David M. Young Jr. and by Stanley P. Frankel in 1950 for the purpose of automatically solving linear systems on digital computers. Over-relaxation methods had been used before the work of Young and Frankel.

  8. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    Let y (n) (x) be the nth derivative of the unknown function y(x).Then a Cauchy–Euler equation of order n has the form () + () + + =. The substitution = (that is, = ⁡ (); for <, in which one might replace all instances of by | |, extending the solution's domain to {}) can be used to reduce this equation to a linear differential equation with constant coefficients.

  9. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...