Search results
Results from the WOW.Com Content Network
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript. In virology, the term transcription is used when referring to mRNA synthesis from a viral RNA ...
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
Reverse transcription is the transfer of information from RNA to DNA (the reverse of normal transcription). This is known to occur in the case of retroviruses, such as HIV, as well as in eukaryotes, in the case of retrotransposons and telomere synthesis. It is the process by which genetic information from RNA gets transcribed into new DNA.
Double stranded DNA that enters from the front of the enzyme is unzipped to avail the template strand for RNA synthesis. For every DNA base pair separated by the advancing polymerase, one hybrid RNA:DNA base pair is immediately formed. DNA strands and nascent RNA chain exit from separate channels; the two DNA strands reunite at the trailing end ...
First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U
Repeated sequences (also known as repetitive elements, repeating units or repeats) are short or long patterns that occur in multiple copies throughout the genome.In many organisms, a significant fraction of the genomic DNA is repetitive, with over two-thirds of the sequence consisting of repetitive elements in humans. [1]
rRNA maturation, DNA replication: Eukaryotes [8] Y RNA: RNA processing, DNA replication: Animals [9] Telomerase RNA Component: TERC Telomere synthesis: Most eukaryotes [10] Spliced Leader RNA: SL RNA mRNA trans-splicing, RNA processing