Search results
Results from the WOW.Com Content Network
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)
Planck constant: 6.626 070 15 × 10 −34 ... elementary charge: 1.602 176 634 ... While the values of the physical constants are independent of the system of units ...
In particle physics and physical cosmology, the Planck scale is an energy scale around 1.22 × 10 28 eV (the Planck energy, corresponding to the energy equivalent of the Planck mass, 2.176 45 × 10 −8 kg) at which quantum effects of gravity become significant.
This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
As a result of the 2019 revision of the SI, the Planck constant h has a fixed value h = 6.626 070 15 × 10 −34 J⋅Hz −1, [13] which, together with the definitions of the second and the metre, provides the official definition of the kilogram. Furthermore, the elementary charge also has a fixed value of e = 1.602 176 634 × 10 −19 C ...
where c is the speed of light and h is the Planck constant. [5] The relative uncertainty, 5 × 10 −8 in the 2006 CODATA recommended value, [6] is due entirely to the uncertainty in the value of the Planck constant. With the re-definition of kilogram in 2019, there is no uncertainty by definition left in Planck constant anymore.