Search results
Results from the WOW.Com Content Network
To choose two out of three, three coins are flipped, and if two coins come up the same and one different, the different one loses (is out), leaving two players. To choose one out of three, the previous is either reversed (the odd coin out is the winner ) or a regular two-way coin flip between the two remaining players can decide.
Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player whose sequence appears first wins. Provided sequences of at least length three are used, the second player (B) has an edge over the starting player (A).
The fair coin is tossed three times. There are 8 possible outcomes: Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} (here "HTH" for example means that first time the coin landed heads, the second time tails, and the last time heads again).
Roney and Trick told participants in their experiment that they were betting on either two blocks of six coin tosses, or on two blocks of seven coin tosses. The fourth, fifth, and sixth tosses all had the same outcome, either three heads or three tails. The seventh toss was grouped with either the end of one block, or the beginning of the next ...
The St. Petersburg paradox or St. Petersburg lottery [1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...
In probability theory, the sample space (also called sample description space, [1] possibility space, [2] or outcome space [3]) of an experiment or random trial is the set of all possible outcomes or results of that experiment. [4]
A fair coin, when tossed, should have an equal chance of landing either side up. In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin.
Define the sequence of random variables on the coin toss space, () where () =. i.e. each X i {\displaystyle X_{i}} records the outcome of the i {\displaystyle i} th flip. In this case, any infinite sequence of heads and tails is a possible outcome of the experiment.