Search results
Results from the WOW.Com Content Network
Hematite and magnetite are the most common types of Iron ore. Roughly 98% of iron ore on the global market is used in iron and steel production. [8] The other 2% of iron ore is used to make powdered iron for certain types of steel, auto parts, and catalysts; radioactive iron for medicine; and iron blue in paints, inks, cosmetics, and plastics. [5]
The water content of channel iron deposits (quoted as Loss on Ignition) is from 7% to 12%, which is the highest of all iron ore types, generally due to the presence of goethite-limonite. Phosphorus, aluminium and sulfur levels are another concern, typically being above normal levels in-situ although if the phosphorus and aluminium are hosted in ...
Dewatering is an important process in mineral processing. The purpose of dewatering is to remove water absorbed by the particles which increases the pulp density. This is done for a number of reasons, specifically, to enable ore handling and concentrates to be transported easily, allow further processing to occur and to dispose of the gangue.
The materials that are left over after are a result of separating the valuable fraction from the uneconomic fraction of ore. These large amounts of waste are a mixture of water, sand, clay, and residual bitumen. Tailings are commonly stored in tailings ponds made from naturally existing valleys or large engineered dams and dyke systems. [73]
While the first iron ore was likely meteoric iron, and hematite was far easier to smelt, in Africa, where the first evidence of iron metallurgy occurs, [dubious – discuss] limonite is the most prevalent iron ore. Before smelting, as the ore was heated and the water driven off, more and more of the limonite was converted to hematite.
Direct reduction processes can be divided roughly into two categories: gas-based and coal-based. In both cases, the objective of the process is to remove the oxygen contained in various forms of iron ore (sized ore, concentrates, pellets, mill scale, furnace dust, etc.) in order to convert the ore to metallic iron, without melting it (below 1,200 °C (2,190 °F)).
The concentrate of the ore is mixed with water and then pumped over a long distance to a port where it can be shipped for further processing. At the end of the pipeline, the material is separated from the [slurry] in a filter press to remove the water. This water is usually subjected to a waste treatment process before disposal or return to the ...
Ore minerals in IOCG deposits are typically copper-iron sulfide chalcopyrite and gangue pyrite, forming 10–15% of the rock mass. Supergene profiles can be developed above weathered examples of IOCG deposits, as exemplified by the Sossego deposit, Para State, Brazil , where typical oxidised copper minerals are present, e.g.; malachite ...