Search results
Results from the WOW.Com Content Network
In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. [1] A linear search runs in linear time in the worst case, and makes at most n comparisons, where n is the length of
Codes in general are often denoted by the letter C, and a code of length n and of rank k (i.e., having n code words in its basis and k rows in its generating matrix) is generally referred to as an (n, k) code. Linear block codes are frequently denoted as [n, k, d] codes, where d refers to the code's minimum Hamming distance between any two code ...
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
In coding theory, Hamming(7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.
Type II codes are binary self-dual codes which are doubly even. Type III codes are ternary self-dual codes. Every codeword in a Type III code has Hamming weight divisible by 3. Type IV codes are self-dual codes over F 4. These are again even. Codes of types I, II, III, or IV exist only if the length n is a multiple of 2, 8, 4, or 2 respectively.
Group codes consist of linear block codes which are subgroups of , where is a finite Abelian group. A systematic group code C {\displaystyle C} is a code over G n {\displaystyle G^{n}} of order | G | k {\displaystyle \left|G\right|^{k}} defined by n − k {\displaystyle n-k} homomorphisms which determine the parity check bits.
The Hadamard code is a linear code, and all linear codes can be generated by a generator matrix.This is a matrix such that () = holds for all {,}, where the message is viewed as a row vector and the vector-matrix product is understood in the vector space over the finite field.
Let be a binary linear code of length . The weight distribution is the sequence of numbers = # {() =} giving the number of codewords c in C having weight t as t ranges from 0 to n. The weight enumerator is the bivariate polynomial