enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The 4n chain of thorium-232 is commonly called the "thorium series" or "thorium cascade". Beginning with naturally occurring thorium-232, this series includes the following elements: actinium, bismuth, lead, polonium, radium, radon and thallium. All are present, at least transiently, in any natural thorium-containing sample, whether metal ...

  3. Thorium-232 - Wikipedia

    en.wikipedia.org/wiki/Thorium-232

    The 4n decay chain of 232 Th, commonly called the "thorium series" Thorium-232 has a half-life of 14 billion years and mainly decays by alpha decay to radium-228 with a decay energy of 4.0816 MeV. [3] The decay chain follows the thorium series, which terminates at stable lead-208. The intermediates in the thorium-232 decay chain are all ...

  4. Thorium - Wikipedia

    en.wikipedia.org/wiki/Thorium

    The alpha decay of 232 Th initiates the 4n decay chain which includes isotopes with a mass number divisible by 4 (hence the name; it is also called the thorium series after its progenitor). This chain of consecutive alpha and beta decays begins with the decay of 232 Th to 228 Ra and terminates at 208 Pb. [17]

  5. Isotopes of thorium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_thorium

    Its decay chain is the thorium series, eventually ending in lead-208. The remainder of the chain is quick; the longest half-lives in it are 5.75 years for radium-228 and 1.91 years for thorium-228, with all other half-lives totaling less than 15 days. [55]

  6. Portal:Nuclear technology/Articles/25 - Wikipedia

    en.wikipedia.org/wiki/Portal:Nuclear_technology/...

    All known thorium isotopes are unstable. The most stable isotope, 232 Th, has a half-life of 14.05 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable 208 Pb.

  7. Formation evaluation gamma ray - Wikipedia

    en.wikipedia.org/wiki/Formation_evaluation_gamma_ray

    Uranium 238 and thorium 232 decay sequentially through a long sequence of various isotopes until a final stable isotope. The spectrum of the gamma-rays emitted by these two isotopes consists of gamma-ray of many different energies and form a complete spectra. The peak of thorium series can be found at 2.62 MeV and the Uranium series at 1.76 MeV.

  8. Isotopes of lead - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_lead

    Lead (82 Pb) has four observationally stable isotopes: 204 Pb, 206 Pb, 207 Pb, 208 Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide.The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series (or radium series), the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series ...

  9. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    Thorium-cycle fuels produce hard gamma emissions, which damage electronics, limiting their use in bombs. 232 U cannot be chemically separated from 233 U from used nuclear fuel; however, chemical separation of thorium from uranium removes the decay product 228 Th and the radiation from the rest of the decay chain, which gradually build up as 228 Th